要闻
美式看涨期权二叉树
美式看跌期权,用概率法和二叉树的方法。
应该用的X, 我算出来的跟你一样的
求助,美式期权二叉树定价方法如何求Vega和rho
二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。构建二项式期权定价模型编辑1973年,布莱克和舒尔斯(BlackandScholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(JohnCox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,罗斯、考科斯和马克·鲁宾斯坦(MarkRubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。二叉树思想编辑1:Black-Scholes方程模型优缺点:优点:对欧式期权,有精确的定价公式;缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。2:思想:假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。3:u,p,d的确定:由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:SerΔt=pSu+(1−p)Sd(23)即:e^{r\Deltat}=pu+(1-p)d=E(S)(24)又因股票价格变化符合布朗运动,从而δSN(rSΔt,σS√Δt)(25)=>D(S)=σ2S2δt;利用D(S)=E(S2)−(E(S))2E(S2)=p(Su)2+(1−p)(Sd)2=>σ2S2Δt=p(Su)2+(1−p)(Sd)2−[pSu+(1−p)Sd]2=>σ2Δt=p(u)2+(1−p)(d)2−[pu+(1−p)d]2(26)又因为股价的上扬和下跌应满足:ud=1(27)由(24),(26),(27)可解得:其中:a=erδt。4:结论:在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。
请回答什么是美式看涨期权
按期权买者的权利划分,期权可分为看涨期权(Call Option)和看跌期权(Put Option)。
按期权买者执行期权的时限划分,期权可分为欧式期权和美式期权。
认股权证(Waants)是指附加在公司债务工具上的赋予持有者在某一天或某一期限内按事先规定的价格购买该公司一定数量股票的权利。
股票看涨期权与认股权证是不同的,
区别有:
1)认股权证是由发行债务工具和股票的公司开出的;而期权是由独立的期权卖者开出的。
2)认股权证通常是发行公司为改善其债务工具的条件而发行的,获得者无须交纳额外的费用;而期权则需购买才可获得。
3)有的认股权证是无期限的而期权都是有期限的。
所以,我国目前只有认股权证和认沽权证,而没有看涨期权和看跌期权。
期权定价模型中的二叉树模型里面有个数字不懂如何来的
二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。
构建二项式期权定价模型
编辑
1973年,布莱克和舒尔斯(Black and Scholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。
1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。
二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。
随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。
一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价 格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一 证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。
二叉树思想
编辑
1:Black-Scholes方程模型优缺点:
优点:对欧式期权,有精确的定价公式;
缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。
2:思想:
假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。
3:u,p,d的确定:
由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:
SerΔt = pSu + (1 − p)Sd(23)
即:e^{r\Delta t}=pu+(1-p)d=E(S)(24)
又因股票价格变化符合布朗运动,从而 δS N(rSΔt,σS√Δt)(25)
=>D(S) = σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 + (1 − p)(d)2 − [pu + (1 − p)d]2(26)
又因为股价的上扬和下跌应满足:ud=1(27)
由(24),(26),(27)可解得:
其中:a = erδt。
4:结论:
在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。
根据Black-Scholes公式和看涨-看跌期权平价关系推导看跌期权的定价公式。
1、看涨期权推导公式:
C=S*N(d1)-Ke^(-rT)*N(d2)
其中
d1=(ln(S/K)+(r+0.5*б^2)*T/бT^(1/2)
d2=d1-бT^(1/2)
S-------标的当前价格
K-------期权的执行价格
r -------无风险利率
T-------行权价格距离现在到期日(期权剩余的天数/365)
N(d)---累计正态分布函数(可查表或通过EXCEL计算)
б-------表示波动率(自己设定)
2、平价公式
C+Ke^(-rT)=P+S
则P=C+Ke^(-rT)-S
=S*N(d1)-S - Ke^(-rT)*N(d2) + Ke^(-rT)
=S*[N(d1)-1] + Ke^(-rT)*[1-N(d2)]
=Ke^(-rT)*N(-d2) - S*N(-d1)
以上纯手工打字,望接纳,谢谢!
美式期权和欧式期权的计算公式分别是什么
你所说的参数delta gamma是BS期权定价模型里面的吧。
BS模型本身是针对欧式期权的。对于美式期权要根据具体情况计算
1对于无收益资产的期权而言
同时可以适用于美式看涨期权,因为在无收益情况下,美式看涨期权提前执行是不可取的,它的期权执行日也就是到期日,所以BS适用美式看涨期权;
对于美式看跌,由于可以提前执行,故不适合;
2.对于有收益资产的期权而言
只需改变收益现值(即变为标的证券减去收益折现),BS也适用于欧式看跌期权和看涨期权;
在标的存在收益时,美式看涨和看跌期权存在执行的可能性,因此BS不适用;
- 上一篇:iphone12刘海平支持隐藏吗?
- 下一篇:怎么购买银行股权,持有银行股份有什么用